СИБИРСКИЙ УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ

ЭКОНОМИЧЕСКАЯ ОЦЕНКА ИНВЕСТИЦИЙ

Программа, методические указания и задания контрольной и самостоятельной работы студентов заочной формы обучения специальности 080502.65 «Экономика и управление на предприятии (по отраслям)»

Кафедра экономики потребительской кооперации

Экономическая оценка инвестиций: программа, методические указания и задания контрольной и самостоятельной работы /[сост.: проф. Е.Б. Кибалов, доц. Е.М. Михайлова]. – Новосибирск: СибУПК, 2006. – 84 с.

Рецензент канд. эконом. наук, доцент Н.А. Попова

Программа, методические указания и задания утверждены и рекомендованы к изданию кафедрой экономики потребительской кооперации, протокол от 19 апреля 2006 г. № 14.

© Сибирский университет потребительской кооперации, 2006

ВВЕДЕНИЕ

Дисциплина «Экономическая оценка инвестиций» включена в федеральный компонент цикла общепрофессиональных дисциплин по подготовке специалистов высшей квалификации специальности 080502.65 «Экономика и управление на предприятии (по отраслям)».

Финансово-хозяйственная деятельность во всех сферах экономики, на любом предприятии обязательно связана с осуществлением инвестиционных вложений в создание новых и развитие действующих основных фондов и производств, в материальные и нематериальные активы. Поэтому в современных условиях возрастает потребность в специалистах-аналитиках, которые хорошо ориентируются в вопросах оценки эффективности инвестиций, принятия инвестиционного решения, анализа влияния инвестиций на деятельность всего предприятия.

Основная цель дисциплины состоит в том, чтобы дать студентам – будущим специалистам в области экономики – систематизированные знания об оценке эффективности инвестиций как системе управления инвестиционной деятельностью и как научном методе, обеспечивающем эффективность этой деятельности. При изучении названной дисциплины обеспечивается преемственность и тесная связь с другими учебными дисциплинами: «Экономическая теория», «Статистика», «Экономика предприятия», «Планирование на предприятии», «Ценообразование», «Анализ и диагностика финансовохозяйственной деятельности», «Экономика недвижимости», «Менеджмент», «Налоги и налогообложение» и др.

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

При самостоятельном изучении дисциплины и выполнении контрольной работы студенты должны изучить и законспектировать основные положения, содержащиеся в рекомендуемой экономической литературе.

Контрольная работа включает один вопрос и одну задачу, посвященную комплексной оценке экономической эффективности инвестиционного проекта в условиях неопределенности различных типов.

Контрольная работа выполняется в отдельной тетради с пронумерованными страницами и полями для замечаний рецензентов. Допускаются только общепринятые сокращения слов.

Перед изложением ответа на вопрос необходимо привести его точную формулировку. Ответ на вопрос предполагает предварительное изучение не только учебной литературы, но и статистических сборников и периодических изданий.

Ответ должен быть самостоятельным, без дословного переписывания из учебника или дополнительной литературы.

Текст должен содержать ссылки на литературные источники, которые были использованы при изучении данного вопроса. Ссылки размещаются в конце предложения в квадратных скобках с указанием порядкового номера источника информации и номера страницы. Например: [1, с. 24].

При выполнении задачи необходимо переписать её условие, дать подробное решение с пояснением методики расчета и оценкой полученных результатов. Обязательно наличие выводов по результатам расчетов и решения о выборе определенного варианта инвестиционного проекта.

Решение задачи должно основываться на рекомендациях, приведенных ниже. В данных рекомендация даются основные понятия дисциплины, приводится методика оценки экономической эффективности инвестиционных проектов в условиях определенности и неопределенности. Также при решении задачи рекомендуются использовать компьютерные технологии, в частности программу Microsoft Excel.

В конце контрольной работы следует привести список использованной литературы и перечень норматиных документов, на которые делаются ссылки в тексте. На последней странице ставятся дата выполнения работы и подпись автора.

Контрольную работу необходимо направить на проверку и рецензирование. При положительной рецензии студент допускается к собеседованию, в ходе которого проверяются его знания по излагаемым вопросам. В случае отрицательной рецензии контрольная работа возвращается студенту на доработку. При повторном представлении работы на проверку прилагается первоначальный её вариант с рецензией.

Контрольная работа, выполненная по неправильно выбранному варианту, не рецензируется, и студент не допускается к собеседованию. Студенты, имеющие академическую задолженность по данной дисциплине за прошедшие годы, выполняют задания по варианту текущего года.

Все вопросы, касающиеся контрольной работы, студенты могут отправлять на кафедру экономики потребительской кооперации СибУПК. Адрес: 630087, г. Новосибирск, пр. Карла Маркса, 26. Телефон: 8-383-346-48-65.

Выбор варианта контрольной работы

Контрольная работа содержит 50 вариантов. Нумерация вопросов и задач в общем их перечне соответствует номеру варианта. Вариант студент выбирает по двум последним цифрам номера личного дела (зачетной книжки). Например, номер личного дела Э-01-25. Ему соответствует вариант контрольной работы 25, т.е. вопрос под номером 25 и задача под номером 25. Если последнее число больше 50, то для выбора варианта необходимо от данного числа отнять 50. Например, номер личного дела Э-01-84, ему соответствует вариант контрольной работы 34 (84 - 50).

Рекомендации к выполнению контрольной работы

Для осуществления проектов строительства и эксплуатации различных объектов требуются вложения денежных средств, именуемые инвестициями. Эти инвестиции будут обеспечивать инвестору получение выгод в период эксплуатации объекта инвестирования. Поэтому проекты именуются *инвестиционными* (ИП).

В экономике ИП различных типов имеют большое значение, все они обеспечивают ее рост и развитие. Однако настоящее пособие посвящено проблемам *инвестиций в реальные активы*, конкретно – в активы в виде зданий, сооружений и т.п.

Таким образом, под ИП будут пониматься проектные материалы, характеризующие *физический* проект, порождающий данный *ин-формационный* ИП (проектные материалы).

Проектные материалы являются результатом осуществления процесса проектирования (лицо, разрабатывающее или участвующее в разработке проектных материалов, называется *проектировщиком*), они содержат описание технико-технологических и технико-экономических характеристик ИП. Важнейшей частью последних являются расчеты по оценке экономической эффективности ИП.

Под эффективностью ИП будет пониматься категория, отражающая степень соответствия данного ИП целям и интересам его участников. Будем полагать, что целью участников ИП является получение общественно полезного результата в форме, зафиксированной инвестором (заказчиком) в техническом задании (ТЗ), выданном проектировщикам.

Интересом, одинаковым для всех участников, будем считать получение максимально возможной выгоды (в будущем) на затраченные усилия и вложенные средства (сегодня).

Такое определение эффективности ИП приемлемо в трех случаях:

- 1) если общественно полезный результат ИП, зафиксированный в ТЗ в той или иной форме, достигается с минимальными затратами средств (по сравнению с конкурирующими ИП);
- 2) если зафиксированный в ТЗ уровень затрат средств на проект позволяет обеспечить максимально возможный общественно полезный результат данного проекта (по сравнению с конкурирующими);
- 3) если превышение общественно полезного результата данного проекта над затратами по его осуществлению (по сравнению с конкурирующими проектами) максимально.

Приведенные определения предполагают *оценивание* и сравнение ИП по соответствующим показателям (критериям) с другими, конкурирующими, проектами; если таковых нет, между собой сравниваются варианты одного и того же проекта; если нет и таких, то оцениваемый проект сравнивается с нулевым проектом, по которому для достижения желаемых результатов и выгод предполагается ничего не предпринимать.

Каждому из трех случаев соответствуют специальные формулы, важнейшие из которых будут рассмотрены ниже. Общими для них являются способы исчисления результатов и затрат на основе *модели дисконтированного денежного потока*.

Денежный поток (ДП) — это совокупность платежей и поступлений в определенной валюте, порождаемая ИП на определенном этапе (расчетном периоде) его жизненного цикла. Модель денежного потока ИП (математическая в виде формулы или таблицы, компьютерная в виде алгоритма или графическая) и технический прием учета разновременности затрат и результатов создают информационную основу оценки экономической эффективности ИП.

Пример. Представим себе организацию, которая получила возможность пустить в оборот некоторый свободный объем капитала с целью извлечения прибыли. Сначала рассмотрим теоретическую базу.

В рыночной экономике для этого существует целый спектр возможностей: можно поместить средства на банковский счет, предоставить ссуду, приобрести ценные бумаги, дающие процентный доход и т. д. Первоначально вложенная сумма будет увеличиваться с каждым годом. Например при норме процента, равной 10% годовых, 100 руб. через год обратятся в 110 руб., через два – в 121 руб., через три – в 131,1 руб. и т. д.

Наращение первоначально вложенного капитала происходит по формуле компаундирования (накопления):

$$V_t = V_p (1 + E)^t,$$
 (1)

где V_p – сумма в рублях, вложенная в банк на t лет при годовой норме процента E;

 V_t — наращенная сумма, которая будет выплачена через t лет c учетом годовой нормы процента E.

Из формулы (1) следует, что инвестирование сегодня суммы, несколько меньшей 100 руб., эквивалентно получению 100 руб. через год. Конкретно: 91 руб. сегодня V_p эквивалентен 100 руб. через год (V_t , когда t=1), поскольку 91 руб., размещенный под 10% годовых, и даст исходную сумму (плюс—минус несколько копеек). Таким же образом 83 руб., инвестированные сегодня, эквивалентны 100 руб. через два года, 75 руб. — это 100 руб. через три года и т. д.

Разумеется, описанная ситуация может быть обобщена на любой произвольный срок и любую заданную норму процента. Вернемся к формуле (1) и выразим V_p через V_t :

$$V_{p} = V_{t} / (1 + E)^{t}.$$
 (2)

 V_p в данном случае – это сегодняшний аналог суммы V_t , которая будет выплачена через t лет, с учетом нормы процента, равной Е годовых.

Процедура вычисления сегодняшнего значения любой суммы, намечаемой к получению в будущем, называется дисконтированием, а формулой для производства соответствующего расчета является формула (2). Она служит основой для соизмерения компонентов потока разновременных затрат и результатов (в денежной форме) при оценке эффективности ИП, а правая часть равенства $1/(1+E)^{t}$ называется фактором дисконтирования (дисконтирующим множителем).

Ниже в таблицах приводится оценка (в у.е.) решения по ИП: вкладывать ли деньги в приобретение охраняемой автостоянки; если вкладывать, то при каких условиях.

Норма процента 10%

Таблица 1

Год	Денежный поток (ДП): доход (+), расход (-)	Фактор дисконтирования	Дисконтированный доход (+); расход (-)
0	-8000	1,00	-8000
1	+2000	0,91	+1820
2	+2000	0,83	+1660
3	+2000	0,75	+1500
4	+6000	0,68	+4080

Итого: $4\Pi\Pi = +1060$ y. e.

Таблица 2

Норма процента 18%

Год	Денежный поток (ДП): доход (+), расход (-)	Фактор дисконтиро- вания	Дисконтированный доход (+); расход (-)
0	-8000	1,00	-8000
1	+2000	0,85	+1700

2	+2000	0,72	+1440
3	+2000	0,61	+1220
4	+6000	0,52	+3120

Итого: 4ДД = -520 y. e.

Первоначально предполагалось (табл. 1), что приобретение автостоянки обойдется в 8000 у. е. и будет приносить 2000 у. е. ежегодно от сдачи в аренду в течение четырех лет (считаем, что все платежи осуществляются в последний день года). По истечении четырех лет автостоянку можно будет продать за 4000 у. е., т. е. общее поступление в конце последнего года составит 6000 у. е. (2000 + 4000). Приобретение автостоянки будет выгодно в том случае, если дисконтированная сумма дохода от сдачи в аренду плюс дисконтированное значение цены продажи автостоянки через четыре года превысят цену автостоянки при ее покупке.

Как показывает расчет (табл. 1 и 2), данный ИП принесет доход при норме процента, равной 10% годовых (ЧДД – чистый дисконтированный доход – положителен), но будет убыточен при норме процента 18% (ЧДД отрицателен).

А изменится ли оценка, если удастся договориться с продавцом автостоянки о проплате в два приема, а именно в год 0 (т.е. в момент сделки) – 4000 у. е. и в год 1 расчетного периода проекта – оставшиеся 4000 у. е., т. е. когда автостоянка год до второй выплаты будет сдаваться в аренду и приносить доход инвестору?

Норма процента 10%

Таблица 3

Год	Денежный поток (ДП): доход (+), расход (-)	Фактор дисконтиро- вания	Дисконтированный доход (+); расход (-)
0	-4000	1,00	-4000
1	-2000	0,91	-1820
2	+2000	0,83	+1660
3	+2000	0,75	+1500

4	+6000	0,68	+4080
---	-------	------	-------

Итого: ЧДД = +1420 у. е.

Норма процента 18%

Таблица 4

Год	Денежный поток (ДП): доход (+), расход (-)	Фактор дисконтиро- вания	Дисконтированный доход (+); расход (-)
0	-4000	1,00	-4000
1	-2000	0,85	-1700
2	+2000	0,72	+1440
3	+2000	0,61	+1220
4	+6000	0,52	+3120

Итого: ЧДД = +80 у. е.

Как показывают расчеты (см. табл. 1, 3, 2, 4), сдвиг проплаты за купленную автостоянку на более позднюю дату при 10% ставке делает инвестиционный проект более привлекательным (1420 > 1060), прибыльным — даже при ставке 18% (80 > -520). Это подтверждает ранее сказанное: затраты выгодно отодвигать на более поздние даты.

Рассмотрим числовой пример оценки эффективности ИП по показателю NPV в условиях определенности.

Пусть необходимо осуществить оценку эффективности альтернативных вариантов ИП и выбрать один из них для реализации. Альтернативные варианты — это значит взаимоисключающие: если реализуется один, то другие отпадают. Необходимо выбрать наилучший альтернативный вариант, т. е. такой, эффективность которого выше, чем всех сравниваемых.

Исходные данные. ИП состоит из трех циклов: инвестиционностроительного ИС, эксплуатационного Э, ликвидационного Л. В совокупности циклы ИС, Э, Л образуют расчетный период ИП общей продолжительностью 10 лет, причем ИС составляет 4 года, Э – 6 лет, Л–по предположению осуществляется мгновенно в последний день десятого года и содержательно означает продажу объекта.

Имеются три альтернативных варианта ИП.

Вариант І

Таблица 5

Цикл	Инвестиционно-					Эксп	луата	щион	ный	
	строительный									
Годы	1	2	3	4	5	6	7	8	9	10
Денежный по- ток, млн. руб.	-1	-1	-3	-3	3	6	6	4	3	7

Вариант II

Таблица 6

Цикл	Инвестиционно-					Эксп	луата	щион	ный	
	строительный									
Годы	1	2	3	4	5	6	7	8	9	10
Денежный по- ток, млн. руб.	-4	-4	-4	-4	3	6	6	4	3	28

Вариант III

Таблица 7

Цикл	Инвестиционно-					Эксп	луата	щион	ный	
	строительный									
Годы	1	2	3	4	5	6	7	8	9	10
Денежный по- ток, млн. руб.	-2	-2	-3	-3	4	5	6	5	4	9

Оценка ИП может потребоваться не только при работе с отечественными инвесторами, но и с иностранными. В связи с этим необходимо знать, как одни и те же понятия и показатели, используемые при оценке ИП, обозначаются в наших официальных методиках и, например, в международной методике ЮНИДО. Поэтому в дальнейшем при рассмотрении данного примера будем пользоваться международной терминологией, каждый раз соотнося англоязычные термины с их русскими аналогами.

В расчетном периоде ИП экономические условия могут быть разными, предполагается, что обобщенной характеристикой этих условий (инвестиционного климата) является норма дисконта. *Норма дисконта* — норма обесценения денежной единицы *по мере удаления в будущее*; используется инвестором для учета разновременных затрат и результатов; равна приемлемой для инвестора норме дохода на

капитал и используется инвестором как экономический фильтр при отборе проектов для реализации. А *норма процента* — эта категория взаимоотношений должника и заимодавца, когда процентная ставка рассматривается как средство увеличения долга первого и обогащения второго. В нашем случае норма дисконта может принимать значения 6%, 12%, 16% и 21%. Причем могут иметь место два случая:

- известно распределение вероятностей реализации тех или иных условий (табл. 8);
- распределение вероятностей реализации тех или иных условий неизвестно.

Таблица 8

Вероятность, доля единицы	0,1	0,3	0,1	0,5
Норма дисконта, %	21	16	12	6

Требуется:

- а) используя в качестве критерия эффективности альтернативных вариантов I, II, III ИП (таблицы 5, 6, 7) показатель NPV, исчислить эффективность каждого варианта в условиях *определенности*; это означает, что NPV для каждого из них следует найти при разных условиях, характеризуемых уровнем нормы дисконта (см. табл. 8, строка вторая); таким образом, необходимо провести четыре расчета (по числу вариантов нормы дисконта) и выявить наиболее эффективные при разных нормах дисконта;
- б) используя результаты предыдущего расчета, произведенного для условий *определенности*, выявить альтернативный вариант ИП, ожидаемая эффективность которого в условиях *неопределенности* выше, чем у двух других.

Решение. Сначала решаем задачу **a**, т. е. находим наиболее эффективные варианты по показателю NPV при разных нормах дисконта, предполагая, что эта норма однозначно задана (условие **onpedenehocmu**).

$$NPV = -\sum_{t=1}^{n} \frac{I_t}{(1+r)^t} + \sum_{t=1}^{n} \frac{CF_t}{(1+r)^t},$$
(3)

где NPV (англ. net present value – чистая современная (приведенная) стоимость); это то, что по-русски именовалось ЧДД – чистым дисконтированным доходом;

It – инвестиционные затраты (-) в период t; это то, что обозначалось как первоначально вложенный денежный капитал (как бы мгновенно, в момент запуска проекта);

r – норма дисконта; это то, что раньше называли нормой процента;

CF – (англ. cash flow) поступления денежных средств (+) в конце периода t; это то, что мы называли денежный потоком, t – номер года реализации ИП;

n – время реализации проекта (количество лет).

$$r_1 = 6\%$$

Вариант І

NPV = $[-1 / (1+0.06)^1] + [-1 / (1+0.06)^2] + [-3 / (1+0.06)^3] + [-3 / (1+0.06)^4] + [3 / (1+0.06)^5] + [6 / (1+0.06)^6] + [6 / (1+0.06)^7] + [4 / (1+0.06)^8] + [3 / (1+0.06)^9] + [7 / (1+0.06)^{10}] = 11.93 млн. руб.$

Вариант II

NPV = $[-4 / (1+0.06)^1] + [-4 / (1+0.06)^2] + [-4 / (1+0.06)^3] +$ + $[-4 / (1+0.06)^4] + [3 / (1+0.06)^5] + [6 / (1+0.06)^6] + [6 / (1+0.06)^7] +$ + $[4 / (1+0.06)^8] + [3 / (1+0.06)^9] + [28 / (1+0.06)^{10}] = 16.52$ млн. руб.

Вариант Ш

NPV = $[-2/(1+0.06)^1] + [-2/(1+0.06)^2] + [-3/(1+0.06)^3] + [-3/(1+0.06)^4] + [4/(1+0.06)^5] + [5/(1+0.06)^6] + [6/(1+0.06)^7] + [5/(1+0.06)^8] + [4/(1+0.06)^9] + [9/(1+0.06)^{10}] = 12,47$ млн. руб.

Из расчетов следует, что при норме дисконта $r_4 = 6\%$ лучшим является вариант II (максимальный NPV = 16, 52 млн. руб.).

$$r_2 = 12\%$$

Вариант I $\text{NPV} = \left[-1 \ / \ (1+0,12)^1 \right] + \left[-1 \ / \ (1+0,12)^2 \right] + \left[-3 \ / \ (1+0,12)^3 \right] + \\ + \left[-3 \ / \ (1+0,12)^4 \right] + \left[3 \ / \ (1+0,12)^5 \right] + \left[6 \ / \ (1+0,12)^6 \right] + \left[6 \ / \ (1+0,12)^7 \right] + \\ + \left[4 \ / \ (1+0,12)^8 \right] + \left[3 \ / \ (1+0,12)^9 \right] + \left[7 \ / \ (1+0,12)^{10} \right] = 6,68 \text{ млн. руб.}$

Вариант П

NPV = $[-4 / (1+0.12)^1] + [-4 / (1+0.12)^2] + [-4 / (1+0.12)^3] +$ + $[-4 / (1+0.12)^4] + [3 / (1+0.12)^5] + [6 / (1+0.12)^6] + [6 / (1+0.12)^7] +$ + $[4 / (1+0.12)^8] + [3 / (1+0.12)^9] + [28 / (1+0.12)^{10}] = 7,02$ млн. руб.

Вариант III

NPV = $[-2/(1+0,12)^1] + [-2/(1+0,12)^2] + [-3/(1+0,12)^3] + [-3/(1+0,12)^4] + [4/(1+0,12)^5] + [5/(1+0,12)^6] + [6/(1+0,12)^7] + [5/(1+0,12)^8] + [4/(1+0,12)^9] + [9/(1+0,12)^{10}] = 6,45$ млн. руб.

Из расчетов следует, что при норме дисконта $r_2 = 12\%$ лучшим является вариант II (максимальный NPV = 7,02 млн. руб.).

$$r_3 = 16\%$$

Вариант І

NPV = $[-1 / (1+0,16)^1] + [-1 / (1+0,16)^2] + [-3 / (1+0,16)^3] +$ + $[-3 / (1+0,16)^4] + [3 / (1+0,16)^5] + [6 / (1+0,16)^6] + [6 / (1+0,16)^7] +$ + $[4 / (1+0,16)^8] + [3 / (1+0,16)^9] + [7 / (1+0,16)^{10}] = 4,43$ млн. руб.

Вариант П

NPV = $[-4 / (1+0,16)^1] + [-4 / (1+0,16)^2] + [-4 / (1+0,16)^3] +$ + $[-4 / (1+0,16)^4] + [3 / (1+0,16)^5] + [6 / (1+0,16)^6] + [6 / (1+0,16)^7] +$ + $[4 / (1+0,16)^8] + [3 / (1+0,16)^9] + [28 / (1+0,16)^{10}] = 3,18$ млн. руб.

Вариант Ш

NPV = $[-2/(1+0,16)^1]$ + $[-2/(1+0,16)^2]$ + $[-3/(1+0,16)^3]$ + + $[-3/(1+0,16)^4]$ + $[4/(1+0,12)^5]$ + $[5/(1+0,16)^6]$ + $[6/(1+0,16)^7]$ + + $[5/(1+0,16)^8]$ + $[4/(1+0,16)^9]$ + $[9/(1+0,16)^{10}]$ = 3, 91 млн. руб.

Из расчетов следует, что при норме дисконта $r_3 = 16\%$ лучшим является вариант III (максимальный NPV = 3, 91 млн. руб.).

$$r_4 = 21\%$$

Вариант І

NPV = $[-1 / (1+0.21)^1] + [-1 / (1+0.21)^2] + [-3 / (1+0.21)^3] +$ + $[-3 / (1+0.21)^4] + [3 / (1+0.21)^5] + [6 / (1+0.21)^6] + [6 / (1+0.21)^7] +$ + $[4 / (1+0.21)^8] + [3 / (1+0.21)^9] + [7 / (1+0.21)^{10}] = 2,50$ млн. руб.

Вариант II

NPV = $[-4 / (1+0.21)^1] + [-4 / (1+0.21)^2] + [-4 / (1+0.21)^3] +$ + $[-4 / (1+0.21)^4] + [3 / (1+0.21)^5] + [6 / (1+0.21)^6] + [6 / (1+0.21)^7] +$ + $[4 / (1+0.21)^8] + [3 / (1+0.21)^9] + [28 / (1+0.21)^{10}] = 0.06$ млн. руб. Вариант III

NPV =
$$[-2/(1+0.21)^1] + [-2/(1+0.21)^2] + [-3/(1+0.21)^3] + [-3/(1+0.21)^4] + [4/(1+0.21)^5] + [5/(1+0.21)^6] + [6/(1+0.21)^7] + [5/(1+0.21)^8] + [4/(1+0.21)^9] + [9/(1+0.21)^{10}] = 1,75$$
 млн. руб.

Из расчетов следует, что при норме дисконта $r_4 = 21\%$ лучшим является вариант I (максимальный NPV = 2,50 млн. руб.).

Теперь, используя результаты расчетов, полученные при решении задачи в условиях определенности, решаем задачу оценки ожидаемой эффективности в условиях *неопределенности*. Неопределенность заключается в том, что неизвестно, какие условия будут иметь место фактически при осуществлении ИП, следовательно, неизвестно, какую норму дисконта г, из числа рассмотренных выше, надо подставлять в формулу исчисления NPV по вариантам I, II, III ИП. Здесь возможны два случая:

- неизвестно, какие условия из числа рассматриваемых (а их четыре), следовательно, и какой уровень г, опосредующий каждое из этих условий, будут иметь место при осуществлении ИП; будем называть такую неопределенность *радикальной*;
- какие условия, следовательно, какой уровень Е, опосредующий эти условия, будут иметь место при осуществлении ИП, известно в вероятностном смысле; будем называть такую неопределенность *вероямностной*.

Для расчетов ожидаемой эффективности формируется оценочная матрица «варианты — норма дисконта», элементами a_{ij} которой являются значения NPV, определенные на предыдущем этапе расчетов (табл. 9).

Таблица 9

		Уровни ј нормы дисконта					
		$r_4 = 21\%$	$r_3 = 16\%$	$r_2 = 12\%$	$r_1 = 6\%$		
ЧДД	I	2,50	4,43	6,68	11,93		
млн. руб.	II	0,06	3,18	7,02	16,52		
	III	1,75	3,91	6,45	12,47		

Для случая радикальной неопределенности расчет ведем по специальным критериям теории принятия решений. Для этого оценочную матрицу (табл. 9) анализируем по следующим критериям.

Критерий Вальда (W)

W = max min
$$a_{ij} = 2,50$$
;
 $I \le i \le III \quad 1 \le j \le 4$

следовательно, наиболее предпочтительным является вариант І.

Критерий Сэвиджа (S)

Для расчета по этому критерию строим матрицу сожалений (иногда ее называют матрицей потерь, иногда — рисков). Матрица сожалений строится путем преобразования исходной оценочной матрицы (табл. 9) следующим образом. В каждом столбце исходной оценочной матрицы находится наибольший элемент а_{іі}, после чего найденное значение последовательно вычитается из значений всех элементов данного столбца; поскольку вычитаемое число больше остальных, то получаемые числа будут отрицательными, кроме случая, когда наибольший элемент вычитается сам из себя и разность будет равна 0. Полученные в результате описанной операции числа, взятые без знака минус, образуют элементы г_{іі} матрицы сожалений (табл. 10).

Таблица 10

0	0	0,34	4,59
2,44	1,25	0	0
0,75	0,52	0,57	4,05

Если проанализировать табл. 10 по критерию Сэвиджа, то получится:

$$S = \min_{1 \le i \le III} \max_{1 \le j \le 4} r_{ij} = 2,44;$$

следовательно, наиболее предпочтительным является вариант II.

Критерий Гурвица (Н)

Вернемся к исходной оценочной матрице (табл. 9) и представим ее в виде табл. 11, более удобной для последующего анализа.

		Сцен	арий		min a _{ii}	max a _{ii}	$2/3 (\text{min } a_{ij}) +$
	$r_4 = 21\%$	$r_3 = 16\%$	$=16\%$ $r_2 = 12\%$ $r_1 = 6$			j	$+1/3 \text{ (max } a_{ij})$
I	2,50	4,43	6,68	11,93	2,50	11,93	5,64
II	0,06	3,18	7,02	16,52	0,06	16,52	5,54
III	1,75	3,91	6,45	12,47	1,75	12,47	5,32

Таблицу 11 анализируем по критерию Гурвица:

H = max
$$[(2/3) x (min a_{ij}) + (1/3) x (max a_{ij})] = 5,64.$$

 $1 \le i \le III$ $1 \le j \le 4$ $1 \le j \le 4$

Коэффициенты перед круглыми скобками в сумме равны 1 и выражают предпочтения экспертов или лица, принимающего решение, в условиях неопределенности, также отражают степень их оптимизма или пессимизма, т.е. отношения к возможности получения максимального или минимального а_{іі}. Теоретически эти коэффициенты могут принимать любые значения в интервале от 0 до 1, в том числе и граничные значения интервалов, но при условии, что сумма коэффициентов должна равняться 1. Значения коэффициентов в представленной выше формуле приведены в официальных методических рекомендациях по оценке инвестиционных проектов.

Наиболее предпочтительным в этом случае является вариант I.

Для случая вероятностной неопределенности расчет ведем по другим специальным критериям теории принятия решений. Для этого оценочную матрицу (табл. 9), преобразованную в табл. 12, анализируем по следующим критериям.

Критерий Лапласа (L)

Когда реализация тех или иных условий, из четырех рассмотренных, представляется равновероятной.

L = max
$$[(1/4 \sum_{j=1}^{j=4} a_{ij}] = 6,70,$$

Таблица 12

		Ур	Уровни ј нормы дисконта							
		$r_4 = 21\%$	$r_3 = 16\%$	$1/4 \sum_{j=1}^{n} a_{ij}$						
ЧДД	I	2,50	4,43	6,68	11,93	6,41				
млн.руб.	II	0,06	3,18	7,02	16,52	6,70				
	III	1,75	1.75 3.91 6.45 12.47							

Наиболее предпочтительным в этом случае является вариант II.

Критерий Байеса (В)

$$\mathbf{B} = \max \sum_{j=1}^{j=4} p_j a_{ij} = 9,89.$$

$$1 \le i \le \text{III}$$

Когда вероятности реализации тех или иных условий, из четырех рассмотренных, задаются таблицей 13, преобразованной из табл. 12 с помощью данных табл. 8.

Таблица 13

	Уровни ј нормы дисконта										
		$r_4 = 21\%$	$r_4 = 21\%$ $r_3 = 16\%$ $r_2 = 12\%$ $r_1 = 6\%$								
ЧДД	I	2,50	2,50 4,43 6,68 11,93								
млн.	II	0,06	3,18	7,02	16,52	9,89					
руб.	II	1,75	3,91	6,45	12,47	8,23					
		0,1									
			Вероятности рј								

Лучшим является вариант II.

3. ЗАДАНИЯ КОНТРОЛЬНОЙ РАБОТЫ

Вопросы

- 1. Экономическая сущность и классификация инвестиций.
- 2. Инвестиционный процесс: понятие, субъекты, объекты, принципы организации.
 - 3. Факторы, влияющие на инвестиционную деятельность в России.
- 4. Методы государственного регулирования инвестиционной деятельности.
 - 5. Понятие и классификация инвестиционных проектов предприятия.
 - 6. Этапы реализации инвестиционного проекта предприятия.
 - 7. Система управления инвестиционным проектом предприятия.
- 8. Понятие и возможности оптимизации портфеля инвестиций. Достижимый и эффективный список портфелей инвестиций.
- 9. Инвестиционный климат: понятие, методы оценки, проблемы формирования.
- 10. Инвестиционный рынок России и его участники. Российские государственные инвестиционные институты.
- 11. Инвестиционная деятельность в Российской Федерации: состояние, особенности организации, перспективы развития.
- 12. Особенности организации инвестиционной деятельности в регионах Российской Федерации.
- 13. Проблемы организации и развития инвестиционной деятельности в России.
- 14. Проблемы привлечения иностранных инвестиций в экономику Российской Федерации.
- 15. Государственная политика стимулирования инвестиционного процесса в России и за рубежом.
- 16. Понятие и виды эффективности. Критерии определения экономической эффективности оценки инвестиций.
- 17. Аналитические подходы и основные показатели, используемые в расчете проектной дисконтной ставки.
- 18. Концепция денежных потоков в инвестиционном анализе (денежные оттоки и притоки, косвенный и прямой методы оценки денежного потока от операционной деятельности).
- 19. Оценка будущих денежных потоков инвестиционного проекта. Оценка денежного потока по периодам жизненного цикла инвестиционного проекта.

- 20. Классификация показателей оценки экономической эффективности долгосрочных инвестиций. Основополагающие принципы оценки эффективности долгосрочных инвестиций.
- 21. Статистические методы оценки экономической эффективности инвестиционных проектов.
- 22. Методика расчета, правила применения, положительные стороны и недостатки чистой текущей стоимости.
- 23. Методика расчета, правила применения, положительные стороны и недостатки показателей срока окупаемости.
- 24. Методика расчета, правила применения, положительные стороны и недостатки показателя внутренней нормы рентабельности.
- 25. Методика расчета, правила применения, положительные стороны и недостатки индекса рентабельности инвестиций.
- 26. Методика расчета, правила применения, положительные стороны и недостатки средних годовых показателей инвестиционной привлекательности.
- 27.Особенности оценки экономической эффективности капитальных вложений.
- 28. Понятие альтернативных инвестиционных проектов, методы их расчета.
- 29. Сравнительная оценка альтернативных проектов с неравными сроками реализации.
- 30. Оценка практики использования показателей эффективности долгосрочных инвестиций в России и за рубежом.
- 31. Методы анализа инвестиционных проектов, финансируемых международными организациями.
- 32. Методика оценки бюджетной эффективности инвестиционного проекта.
- 33. Методика оценки социальной и экологической эффективности инвестиционного проекта.
- 34. Анализ влияния инвестиционных проектов на эффективность финансово-хозяйственной деятельности предприятия.
- 35.Прогнозирование потребности в общем объеме инвестиционных ресурсов.
- 36. Классификация источников средств финансирования долгосрочных инвестиций. Информационная база анализа динамики и структуры средств финансирования долгосрочных инвестиций.

- 37. Критерии оценки и оптимизации структуры капитала инвестиционного проекта.
- 38. Анализ цены и эффективности использования собственного и заемного капитала. Эффект финансового рычага.
- 39. Показатель средневзвешенной цены капитала, его использование в финансово-инвестиционном анализе. Предельная (маржинальная) цена капитала.
 - 40. Анализ эффективности финансового лизинга.
- 41. Проблемы использования привлеченных средств финансирования в инвестиционной деятельности предприятий.
- 42. Сущность и экономическая природа инвестиционного риска. Классификация различных типов риска в долгосрочном инвестировании.
- 43. Место риска в системе комплексного анализа долгосрочных инвестиций. Основные подходы и способы управленческого воздействия на уровень инвестиционного риска.
- 44. Методы, приемы и система показателей анализа различных типов риска в зависимости от условий финансирования и комбинации проектов в портфеле инвестиций.
- 45. Оценка чувствительности инвестиционного проекта как эффективная процедура анализа проектного риска и предварительного инвестиционного контроля.
- 46. Анализ ожидаемого уровня рентабельности инвестиций в условиях систематического риска с использованием модели оценки капитальных активов (CAPM).
- 47. Способы расчета чувствительности показателей эффективности производственно-финансовой деятельности предприятий к воздействию макроэкономических факторов риска (бета-коэффициент).
- 48. Влияние инфляции на конечные результаты финансовохозяйственной деятельности предприятий. Агрегированный индекс цен. Информационная база анализа инфляции.
- 49. Номинальный и реальный подходы в оценке конечных результатов финансово-инвестиционной деятельности предприятий.
- 50. Анализ эффективности инвестиционных проектов в условиях инфляции.

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-2	-2	-6	-10	6	10	10	8	6	10
3 и Р вариант II	-8	-8	-8	-8	6	12	12	8	6	16
3 и Р вариант III	-4	-4	-6	-8	9	10	10	8	6	12
Цикл	Инв		Эксп	ілуат	ацион	ный				
	строительный									

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-2	-5	-9	6	11	11	8	7	9
3 и Р вариант II	-7	-9	-9	-9	7	8	11	15	15	13
3 и Р вариант III	-5	-5	-5	-7	10	10	10	12	12	12
Цикл	Из	нвести	цион	но-		Эксп	луата	ацион	ный	
	строительный									

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (см. табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-4	-4	-5	8	8	9	7	5	10
3 и Р вариант II	-7	-7	-7	-7	5	11	12	7	7	12
3 и Р вариант III	-3	-3	-3	-3	7	7	9	10	7	11
Цикл	Инв	вести	ционі	но-		Эксп	ілуат	ацион	ный	
	CT	роите	й							

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 22%, 15%, 10%, 9% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	22	15	10	9
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-3	-1	-1	3	3	3	6	5	8
3 и Р вариант II	-10	-7	-6	-8	12	14	14	12	10	16
3 и Р вариант III	-2	-2	-2	-5	8	8	8	7	7	8
Цикл	Из	нвест	ицион	но-		Эксп	луат	ацион	ный	
	C	троит	гельнь							

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл.
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	22	145
Цикл		вестиц роител				Эксп	луат	ацио	нный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	20	170
Цикл	Инвестиционно- строительный					Эксг	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-15	-20	-20	-15	10	12	15	20	20	170
3 и Р вариант II	-15	-15	-25	-15	15	15	15	20	20	150
3 и Р вариант III	-18	-15	-18	-18	12	19	20	21	21	150
Цикл	Инвестиционно- строительный				,	Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Задание 8

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-20	-40	-40	-10	20	30	40	50	50	200
3 и Р вариант II	-10	-40	-30	-20	25	25	35	60	60	150
3 и Р вариант III	-15	-35	-35	-10	10	30	40	60	60	150
Цикл		Инвестиционно- строительный				Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-50	-30	-70	-60	70	80	80	80	70	350
3 и Р вариант II	-70	-70	-50	-50	80	100	100	100	80	250
3 и Р вариант III	-60	-60	-60	-60	80	100	100	100	80	220
Цикл	Инвестиционно- строительный					Эксп	луата	цион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-486	-721	-700	-512	701	834	822	831	655	348
3 и Р вариант II	-707	-702	-513	-500	819	1074	980	980	777	251
3 и Р вариант III	-615	-555	-589	-632	848	1010	1010	1010	796	221
Цикл		Инвестиционно- строительный				Эксі	ілуата	ционн	ый	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-150	-200	-200	-150	100	120	150	200	200	1700
3 и Р вариант II	-150	-150	-250	-150	150	150	150	200	200	1500
3 и Р вариант III	-172	-214	-233	-180	180	190	202	211	211	1520
Цикл		Инвестиционно- строительный				Эксг	ілуа	гацио	нный	Í

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

:

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-100	-190	-100	-100	80	80	90	80	90	980
3 и Р вариант II	-50	-150	-150	-50	70	90	90	70	70	980
3 и Р вариант III	-150	-100	-100	-50	70	80	90	60	50	1035
Цикл		нвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-68	-68	-70	-70	60	60	60	60	80	630
3 и Р вариант II	-50	-90	-90	-50	60	60	60	60	80	650
3 и Р вариант III	-90	-90	-50	-50	60	60	60	60	80	720
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-30	-50	-35	-35	20	20	20	20	20	420
3 и Р вариант II	-20	-50	-50	-20	10	20	20	20	20	420
3 и Р вариант III	-37	-38	-20	-20	15	20	20	20	20	340
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 21%, 16%, 12%, 6% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	21	16	12	6
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10	
3 и Р вариант I	-2	-2	-6	-10	6	10	10	8	6	10	
3 и Р вариант II	-8	-8	-8	-8	6	12	12	8	6	16	
3 и Р вариант III	-4	-4	-6	-8	9	10	10	8	6	12	
Цикл		Инвестиционно- строительный				Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-2	-5	-9	6	11	11	8	7	9
3 и Р вариант II	-7	-9	-9	-9	7	8	11	15	15	53
3 и Р вариант III	-5	-5	-5	-7	10	10	10	12	12	12
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-4	-4	-5	8	8	9	7	5	10
3 и Р вариант II	-7	-7	-7	-7	5	11	12	7	7	50
3 и Р вариант III	-3	-3	-3	-3	7	7	9	10	7	11
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-3	-1	-1	3	3	3	6	5	8
3 и Р вариант II	-10	-7	-6	-8	12	14	14	12	10	16
3 и Р вариант III	-2	-2	-2	-5	8	8	8	7	7	8
Цикл	Инвестиционно- строительный				Эксп	ілуата	ацион	ный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	22	145
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	20	170
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-15	-20	-20	-15	10	12	15	20	20	170
3 и Р вариант II	-15	-15	-25	-15	15	15	15	20	20	150
3 и Р вариант III	-18	-15	-18	-18	12	19	20	21	21	150
Цикл		Инвестиционно- строительный				Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-20	-40	-40	-10	20	30	40	50	50	200
3 и Р вариант II	-10	-40	-30	-20	25	25	35	60	60	150
3 и Р вариант III	-15	-35	-35	-10	10	30	40	60	60	150
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-50	-30	-70	-60	70	80	80	80	70	350
3 и Р вариант II	-70	-70	-50	-50	80	100	100	100	80	250
3 и Р вариант III	-60	-60	-60	-60	80	100	100	100	80	220
Цикл	Инвестиционно- строительный				Эксп	луата	цион	ный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-486	-721	-700	-512	701	834	822	831	655	348
3 и Р вариант II	-707	-702	-513	-500	819	1074	980	980	777	251
3 и Р вариант III	-615	-555	-589	-632	848	1010	1010	1010	796	221
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-150	-200	-200	-150	100	120	150	200	200	1700
3 и Р вариант II	-150	-150	-250	-150	150	150	150	200	200	1500
3 и Р вариант III	-172	-214	-233	-180	180	190	202	211	211	1520
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,2	0,5	0,1	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-100	-190	-100	-100	80	80	90	80	90	980
3 и Р вариант II	-50	-150	-150	-50	70	90	90	70	70	980
3 и Р вариант III	-150	-100	-100	-50	70	80	90	60	50	1030
Цикл		Инвестиционно- строительный				Эксп	ілуата	ацио	нный	Í

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-68	-68	-70	-70	60	60	60	60	80	630
3 и Р вариант II	-50	-90	-90	-50	60	60	60	60	80	650
3 и Р вариант III	-90	-90	-50	-50	60	60	60	60	80	720
Цикл	Инвестиционно- строительный				Экс	плуат	ацио	нный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-30	-50	-35	-35	20	20	20	20	20	420
3 и Р вариант II	-20	-50	-50	-20	10	20	20	20	20	420
3 и Р вариант III	-37	-38	-20	-20	15	20	20	20	20	340
Цикл	Инвестиционно- строительный					Экс	плуат	ацио	нный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 17%, 14%, 7% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	17	14	7
Вероятность, в долях единицы	0,1	0,3	0,1	0,5

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-2	-2	-6	-10	6	10	10	8	6	10
3 и Р вариант II	-8	-8	-8	-8	6	12	12	8	6	16
3 и Р вариант III	-4	-4	-6	-8	9	10	10	8	6	12
Цикл	Инвестиционно- строительный				Эксп	луата	щион	ный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-2	-5	-9	6	11	11	8	7	9
3 и Р вариант II	-7	-9	-9	-9	7	8	11	15	15	13
3 и Р вариант III	-5	-5	-5	-7	10	10	10	12	12	12
Цикл	Инвестиционно- строительный				Эксп	луата	цион	ный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-4	-4	-5	8	8	9	7	5	10
3 и Р вариант II	-7	-7	-7	-7	5	11	12	7	7	10
3 и Р вариант III	-3	-3	-3	-3	7	7	9	10	7	11
Цикл		Инвестиционно- строительный				Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-3	-1	-1	3	3	3	6	5	8
3 и Р вариант II	-10	-7	-6	-8	12	14	14	12	10	16
3 и Р вариант III	-2	-2	-2	-5	8	8	8	7	7	8
Цикл	Инвестиционно- строительный					Эксп	луата	цион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	22	145
Цикл	Инвестиционно- строительный					Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	20	170
Цикл	Инвестиционно- строительный				Эксп	луата	цион	ный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-15	-20	-20	-15	10	12	15	20	20	170
3 и Р вариант II	-15	-15	-25	-15	15	15	15	20	20	150
3 и Р вариант III	-18	-15	-18	-18	12	19	20	21	21	150
Цикл		Инвестиционно- строительный				Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-20	-40	-40	-10	20	30	40	50	50	200
3 и Р вариант II	-10	-40	-30	-20	25	25	35	60	60	150
3 и Р вариант III	-15	-35	-35	-10	10	30	40	60	60	150
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

1. Дано:

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-50	-30	-70	-60	70	80	80	80	70	350
3 и Р вариант II	-70	-70	-50	-50	80	100	100	100	80	250
3 и Р вариант III	-60	-60	-60	-60	80	100	100	100	80	220
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-486	-721	-700	-512	701	834	822	831	655	348
3 и Р вариант II	-707	-702	-513	-500	819	1074	980	980	777	251
3 и Р вариант III	-615	-555	-589	-632	848	1010	1010	1010	796	221
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. А).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-150	-200	-200	-150	100	120	150	200	200	1700
3 и Р вариант II	-150	-150	-250	-150	150	150	150	200	200	1500
3 и Р вариант III	-172	-214	-233	-180	180	190	202	211	211	1520
Цикл	Инвестиционно- строительный				Экс	плуат	ацио	нный		

Примечания:

- а) 3 капитальные затраты при строительстве; Р разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-100	-190	-100	-100	80	80	90	80	90	980
3 и Р вариант II	-50	-150	-150	-50	70	90	90	70	70	980
3 и Р вариант III	-150	-100	-100	-50	70	80	90	60	50	1035
Цикл	Инвестиционно- строительный					Эксі	плуат	ацио	нны	й

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-68	-68	-70	-70	60	60	60	60	80	630
3 и Р вариант II	-50	-90	-90	-50	60	60	60	60	80	650
3 и Р вариант III	-90	-90	-50	-50	60	60	60	60	80	720
Цикл	Инвестиционно- строительный				Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-30	-50	-35	-35	20	20	20	20	20	420
3 и Р вариант II	-20	-50	-50	-20	10	20	20	20	20	420
3 и Р вариант III	-37	-38	-20	-20	15	20	20	20	20	340
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 19%, 15%, 13%, 8% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	19	15	13	8
Вероятность, в долях единицы	0,3	0,3	0,2	0,2

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-2	-2	-6	-10	6	10	10	8	6	10
3 и Р вариант II	-8	-8	-8	-8	6	12	12	8	6	16
3 и Р вариант III	-4	-4	-6	-8	9	10	10	8	6	12
Цикл	Инвестиционно- строительный					Эксп	луата	цион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-2	-5	-9	6	11	11	8	7	9
3 и Р вариант II	-7	-9	-9	-9	7	8	11	15	15	13
3 и Р вариант III	-5	-5	-5	-7	10	10	10	12	12	12
Цикл	Инвестиционно- строительный				Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-4	-4	-5	8	8	9	7	5	10
3 и Р вариант II	-7	-7	-7	-7	5	11	12	7	7	50
3 и Р вариант III	-3	-3	-3	-3	7	7	9	10	7	11
Цикл	Инвестиционно- строительный			Эксплуатационный						

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-3	-3	-1	-1	3	3	3	6	5	8
3 и Р вариант II	-10	-7	-6	-8	12	14	14	12	10	16
3 и Р вариант III	-2	-2	-2	-5	8	8	8	7	7	8
Цикл		Инвестиционно- строительный				Эксп	ілуата	ацион	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	22	145
Цикл		нвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

По каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-18	-21	-21	-24	25	25	25	25	20	150
3 и Р вариант II	-15	-20	-24	-30	10	15	20	25	25	201
3 и Р вариант III	-19	-19	-19	-19	20	20	20	20	20	170
Цикл		Инвестиционно- строительный			,	Экспл	іуата	ционі	ный	

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-15	-20	-20	-15	10	12	15	20	20	170
3 и Р вариант II	-15	-15	-25	-15	15	15	15	20	20	150
3 и Р вариант III	-18	-15	-18	-18	12	19	20	21	21	150
Цикл		Инвестиционно- строительный			Эксплуатационный					

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

Проект строительства и эксплуатации объекта N может быть реализован в трех альтернативных вариантах, отличающихся динамикой затрат и результатов за расчетный период, в млн. руб. (табл. A).

Таблица А

Годы	1	2	3	4	5	6	7	8	9	10
3 и Р вариант I	-20	-40	-40	-10	20	30	40	50	50	200
3 и Р вариант II	-10	-40	-30	-20	25	25	35	60	60	150
3 и Р вариант III	-15	-35	-35	-10	10	30	40	60	60	150
Цикл	Инвестиционно- строительный				Эксп	ілуата	ацион	ный		

Примечания:

- а) 3 капитальные затраты при строительстве; P разница между выручкой от реализации товаров (услуг) и производственными издержками (плюс налоги) за эксплуатационный цикл;
- б) затраты в соответствующих колонках приведены со знаком минус;
- в) все затраты и результаты определены в ценах 1-го года реализации проекта, инфляция не учитывается.

Определить по каждому альтернативному варианту I, II, III показатель ЧДД при нормах дисконта 20%, 15%, 11%, 5% и выявить наиболее предпочтительные варианты для определенной нормы дисконта (из числа вышеуказанных).

Таблица Б

Норма дисконта, %	20	15	11	5
Вероятность, в долях единицы	0,2	0,6	0,1	0,1

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Нормативные документы

- 1. Гражданский кодекс Российской Федерации. М.: ИНФРА-М. 2004.
- 2. Федеральный закон «Об инвестиционной деятельности в РФ, осуществляемой в форме капитальных вложений» от 25.02.1999. № 39-Ф3.
- 3. Методические рекомендации по оценке эффективности инвестиционных проектов (вторая редакция) / Министерство экономики РФ, Министерство финансов РФ, ГК по строительству, архитектурной и жилищной политике; В.А. Коссов, В.Н. Лившиц, А.Г. Шахназаров М.: Экономика, 2000. 421 с.

Основная литература

- 4. Виленский П.Л. Оценка эффективности инвестиционных проектов: теория и практика. М.: Дело, 2004. 888 с.
 - 5. Крушвиц Л. Инвестиционные расчеты. СПб.: Питер, 2004. 409 с.
 - 6. Мелкумов Я.С. Инвестиции. М.: ИНФРА-М, 2003. 252 c.
- 7. Савчук В.П., Прилепко С.И., Величко Е.Г. Анализ и разработка инвестиционных проектов. Киев, 2002. 304 с.
- 8. Царев В.В. Оценка экономической эффективности инвестиций. СПб.: Питер, 2004. 460 с.

Дополнительная литература

- 9. Агаларов А.И. Риски и доходность в условиях интернационализации инвестиционных рынков: Эвристические и количественные методы анализа: учеб. пособие. М.: МИМБ, 2005. 103 с.
 - 10. Аньшин В.М. Инвестиционный анализ. М.: Дело, 2004. 278 с.
- 11. Астахова Е.А. Эффективность инвестиций в региональной экономике. Ставрополь: СевКавГТУ, 2004. 157 с.
- 12. Блохина В.Г. Инвестиционный анализ. – Ростов н/Д: Феникс, 2004. – 315 с.
- 13. Блюденов А.Ф. Влияние факторов и рисков на эффективность инвестиций. Челябинск: Изд-во Юж.-Урал. гос. ун-та, 2003. 167 с.
- 14. Бочаров В. В. Методы финансирования инвестиционной деятельности предприятия. М.: Финансы и статистика, 2002. 160 с.

- 15. Бузырев В. В., Васильев В. Д., Зубарев А. А. Выбор инвестиционных решений и проектов: Оптимизационный подход. СПб.: Изд-во СПбГУЭФ, 1999. 224 с.
- 16. Валинурова Л. С. Анализ инвестиционных проектов: учеб. пособие. Уфа, 1999. 150 с.
 - 17. Вахрин П.И. Инвестиции. М.: Дашков и К^о, 2005. 379 с.
 - 18. Волков И.М. Проектный анализ. М.: ИНФРА-М, 2004. 493 с.
- 19. Губанова Е.С. Инвестиционная деятельность в регионе. Вологда: ВНКЦ ЦЭМИ, 2003. 135 с.
- 20. Иванов Г.И. Инвестиции: сущность, виды, механизмы функционирования. Ростов н/Д: Феникс, 2002. 350 с.
- 21. Игольников Г. А., Василевский И. А. Экономическая оценка инвестиционных проектов: Ярославль, Ярослав. гос. ун-т, 2001. 86 с.
- 22. Идрисов Н.Д. Организация и оценка эффективности инвестиций и инноваций. М.: Пресса, 2005. 265 с.
- 23. Инвестиционная деятельность: учеб. пособие для вузов / под ред. Г. П. Подшиваленко, Н. В. Киселевой. М.: КНОРУС, 2005. 420 с.
- 24. Инвестиционная политика: учеб. пособие / под ред. Ю. Н. Лапыгина. М.: КНОРУС, 2005. 309 с.
- 25. Каледин С.В. Актуальные проблемы оценки деятельности и инвестирования субъектов хозяйствования в современной России. Челябинск: Челяб. дом печати, 2004. 251 с.
- 26. Калугин В.А. Многокритериальные методы принятия инвестиционных решений. СПб.: Химиздат, 2004. 210 с.
- 27. Ковалев В. В., Уланов В. А. Курс финансовых вычислений. М.: Финансы и статистика, 2001. 327с.
- 28. Крылов Э. И., Журавкова И. В. Анализ эффективности инвестиционной и инновационной деятельности предприятия: учеб. пособие. М.: Финансы и статистика, 2004. 384 с.
- 29. Кузнецов С.В. Инвестиционный потенциал региона: оценка и механизмы реализации. СПб.: ИРЭ, 2003. 186 с.
- 30. Лимитовский М. А. Основы оценки инвестиционных и финансовых решений. М.: ДеКа, 2002. 231 с.
- 31. Липсиц И. В., Коссов В. В. Инвестиционный проект: методы подготовки и анализа. М.: БЕК, 2003. 293 с.
- 32. Оценка эффективности инвестиций в проекты транспортного строительства. Новосибирск: Наука, 2004. 334 с.

- 33. Родионова С. П., Родионов Н. В. Оценка инвестиционных ресурсов предприятий. СПб.: Альфа, 2001. 207 с.
- 34. Севенард К.Ю. Методы количественной оценки эффективности инвестиционных проектов. СПб.: Изд-во СПбГТУ, 2001. 23 с.
 - 35. Слепнева Т.А. Инвестиции. М.: Инфра-М, 2004. 174 с.
- 36. Смоляк С. А. Оценка эффективности инвестиционных проектов в условиях риска и неопределенности: Теория ожидаемого эффекта. М.: ЦЭМИ РАН, 2001. 142 с.
- 37. Солодков В.Т. Экономика инвестиций и инновационная деятельность предприятия. Иркутск: Изд-во БГУЭП, 2004. 356 с.
- 38. Терехин Д.В. Эффективность инвестиционной деятельности в регионе: проблемы оценки и управления. Тамбов: Изд-во Тамб. гос. ун-та, 2003. 330 с.
- 39. Фальцман В. К. Оценка инвестиционных проектов и предприятий. М.: ТЕИС, 2001. 56 с.
- 40. Филин С.А. Механизм реализации инновационной политики. М.: Роспатент, 2005. 285 с.
- 41. Хэгстром Р.Д. Инвестирование: последнее свободное искусство. М.: Олимп-Бизнес, 2005. 271 с.
- 42. Шарп У. Ф., Александер Г. Дж., Бейли Дж. В. Инвестиции. М.: Инфра-М, 2004. 1027 с.
- 43. Шидов А. Х. Анализ и оценка региональных инвестиционных проектов в инфляционной экономике. Нальчик: КБГУ, 2002. 142 с.

Статьи, опубликованные в журналах «Инвестиции», «Инвестиции в России», «РИСК», «Проблемы теории и практики управления», «ЭКО» и др.